Lung endothelial ADAM17 regulates the acute inflammatory response to lipopolysaccharide
نویسندگان
چکیده
Acute lung injury (ALI) is associated with increased vascular permeability, leukocyte recruitment, and pro-inflammatory mediator release. We investigated the role of the metalloproteinase ADAM17 in endotoxin-induced ALI with focus on endothelial ADAM17. In vitro, endotoxin-mediated induction of endothelial permeability and IL-8-induced transmigration of neutrophils through human microvascular endothelial cells required ADAM17 as shown by inhibition with GW280264X or shRNA-mediated knockdown. In vivo, ALI was induced by intranasal endotoxin-challenge combined with GW280264X treatment or endothelial adam17-knockout. Endotoxin-triggered upregulation of ADAM17 mRNA in the lung was abrogated in knockout mice and associated with reduced ectodomain shedding of the junctional adhesion molecule JAM-A and the transmembrane chemokine CX3CL1. Induced vascular permeability, oedema formation, release of TNF-α and IL-6 and pulmonary leukocyte recruitment were all markedly reduced by GW280264X or endothelial adam17-knockout. Intranasal application of TNF-α could not restore leukocyte recruitment and oedema formation in endothelial adam17-knockout animals. Thus, activation of endothelial ADAM17 promotes acute pulmonary inflammation in response to endotoxin by multiple endothelial shedding events most likely independently of endothelial TNF-α release leading to enhanced vascular permeability and leukocyte recruitment.
منابع مشابه
p-Coumaric acid protects cardiac function against lipopolysaccharide-induced acute lung injury by attenuation of oxidative stress
Objective(s): Acute lung injury (ALI) has a high mortality rate and is characterized by damage to pulmonary system giving rise to symptoms such as histological alteration, lung tissue edema and production of proinflammatory cytokine. p-Coumaric acid (p-CA), as a phenolic compound, that is found in many types of fruits and vegetables has been reported to exhibit a thera...
متن کاملUpregulation of Mer Receptor Tyrosine Kinase Signaling Attenuated Lipopolysaccharide-Induced Lung Inflammation s
Mer receptor tyrosine kinase (Mer) signaling plays a central role in the intrinsic inhibition of the inflammatory response to Tolllike receptor activation. Previously, we found that lung Mer protein expression decreased after lipopolysaccharide (LPS) treatment due to enhanced Mer cleavage. The purpose of the present study was to examine whether pharmacologically restored membrane-bound Mer expr...
متن کاملUpregulation of Mer receptor tyrosine kinase signaling attenuated lipopolysaccharide-induced lung inflammation.
Mer receptor tyrosine kinase (Mer) signaling plays a central role in the intrinsic inhibition of the inflammatory response to Toll-like receptor activation. Previously, we found that lung Mer protein expression decreased after lipopolysaccharide (LPS) treatment due to enhanced Mer cleavage. The purpose of the present study was to examine whether pharmacologically restored membrane-bound Mer exp...
متن کاملVitamin E-Coated Polysulfone Membrane-Based Hemodiafiltration Attenuates Inflammation in a Rat Model of Lipopolysaccharide-Induced Systemic Inflammation
Background: Acute blood purification (ABP) therapy is used regularly in the clinical setting and reportedly alleviates organ failure associated with severe systemic inflammatory responses, leading to reduced mortality. The present study aimed to determine whether there is a difference in efficacy between polysulfone (PS) membranes, which are currently used regularly in the clinical setting, and...
متن کاملIntravenous Transplantation of BMP2-Transduced Endothelial Progenitor Cells Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Rats.
BACKGROUND/AIMS Acute lung injury (ALI) and its aggressive stage, acute respiratory distress syndrome (ARDS), are characterized by diffuse damage and increased permeability of the endothelial barrier, leading to alveolar infiltrates and interstitial edema. Enhancing endothelial integrity represents a novel therapeutic strategy for ALI/ARDS. Endothelial progenitor cells (EPCs) have been reported...
متن کامل